Non-uniform Copper Corrosion: Research Update

Darren A. Lytle
U.S. Environmental Protection Agency
ORD, NRMRL, WSWRD, TTEB,
Cincinnati, Ohio 45268

Jeremy M. Payne
U.S Environmental Protection Agency
University of Cincinnati

Building a scientific foundation for sound environmental decisions

Installation, Condition Assessment, and Reliability of Service Lines, Connections and Fittings **AWWARF** #2927

Project Summary:

Will identify parameters and conditions that influence the failure rate of service pipe materials, connections, and fittings. Will develop a best-practice manual based on extensive analysis of existing installation techniques and material types. Also will develop a methodology for assessing the life expectancy of service lines, connections, and fittings for different materials using a variety of installation techniques under varying environmental conditions. conditions.

Overview of Copper Corrosion

- · Uniform Corrosion Scale
- Erosion Corrosion
- Localized Corrosion (pitting)
 - Type I Cold Water
 - Type II Hot Water
 - Type II Soft Water

RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental

decisions

Objective

- Discuss approach to studying non-uniform copper corrosion
- Present findings

Building a scientific foundation for sound environmental decisions

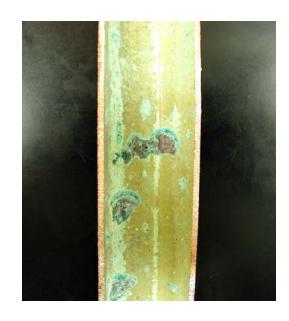

Localized Corrosion (Pitting)

Pitting is a localized acceleration of corrosion that results in the thinning of the pipe wall in the effected area.

Building a scientific foundation for sound environmental decisions

Localized Corrosion (Pitting)

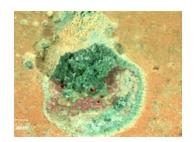
Building a scientific foundation for sound environmental decisions

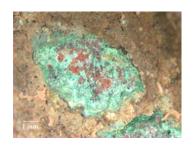

Localized Corrosion (Pitting)

- Type I Cold Water Pitting
 - Attacks horizontal runs of cold water pipes in systems using well waters with a high sulfate to chloride ratio
- · Type II Hot Water Pitting
 - Occurs in hot water with a pH below 7.2
- Type III Soft Water Pitting
 - · Occurs in soft water above pH 8.0
- · Microbiological, material defects

Building a scientific foundation for sound environmental decisions

Pitting Comparison




Ohio site #1

Wisconsin

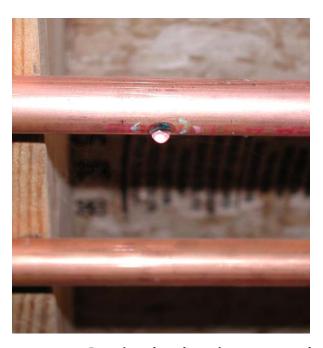
Ohio site #2

All micrographs taken at 10x

decisions

Approach

- ·Field Observations
 - Survey Form- plumbing type, cold vs. hot, horizontal, etc..
- ·Solids Analysis
 - ·SEM, EDS, XRD, etc..
- Water Quality
 - ·Hot vs. cold, similar waters


Building a scientific foundation for sound environmental decisions

Copper Pitting and the Consequences

- Costly Repairs
- Leaks may go undetected in walls or basements, and service lines
- · Pinhole Leaks
 - Mold and Mildew
 - Liability Issues
- Does not lead to high copper levels at the tap

Building a scientific foundation for sound environmental decisions

Pinhole Leaks

Pinhole leaks resulting from copper pitting

Building a scientific foundation for sound environmental decisions

Case Study-Ohio Site 1 Field Observations

- Cold water
- · Horizontal runs of pipe
- $\frac{3}{4}$ " pipe
- · Homes are about 7 years old
- Leaks occur near elbows and joints as well as in long runs
- No preference for the top or bottom of a pipe

Building a scientific foundation for sound environmental decisions

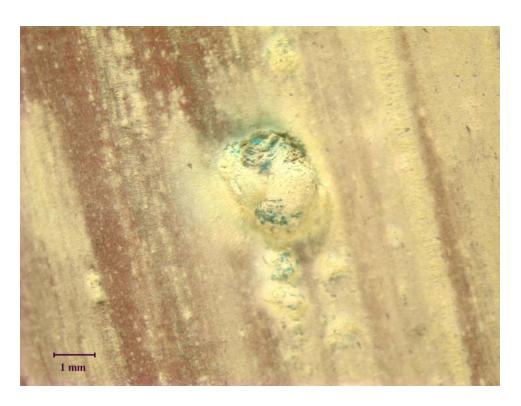
Case Study Field Observations

³₄" pipe

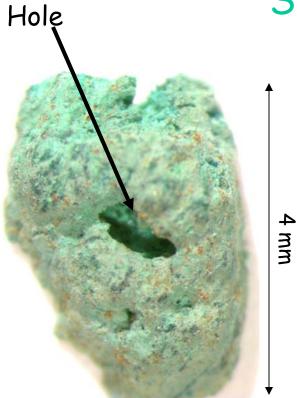
Elbows

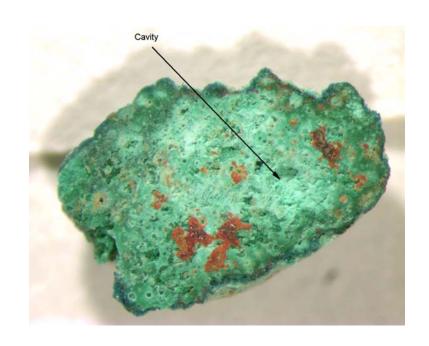
½" pipe

Water leaks


Building a scientific foundation for sound environmental decisions

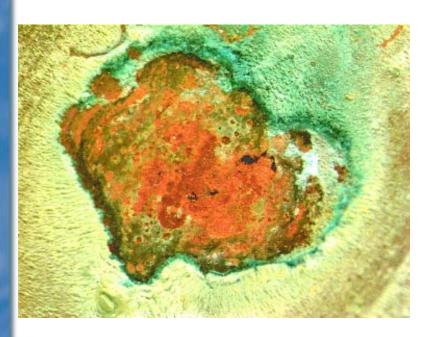
Pipe Cross-Section Solids Analysis

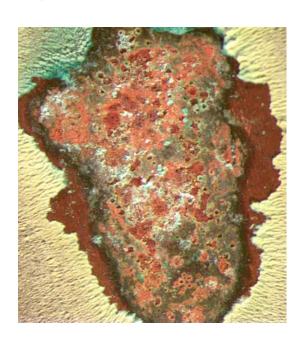

Building a scientific foundation for sound environmental decisions


Anatomy of a Pit Solids Analysis

Building a scientific foundation for sound environmental decisions

The Corrosion Cap Solids Analysis

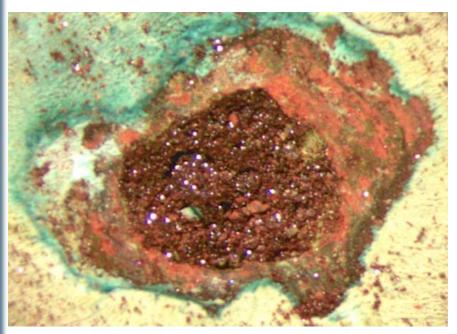

Building a scientific foundation for sound environmental decisions

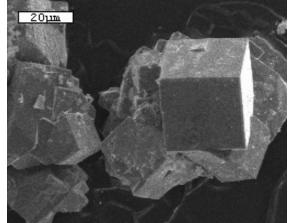

Cap Analysis Solids Analysis

- Brochantite $Cu_4(OH)_6(SO_4)$
- Ponsjakite $Cu_4(OH)_6(SO_4)*H_2O$

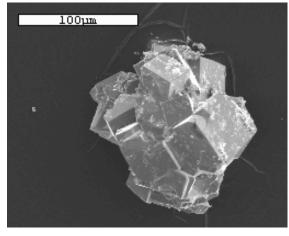
Building a scientific foundation for sound environmental decisions

Perforated Membrane Solids Analysis

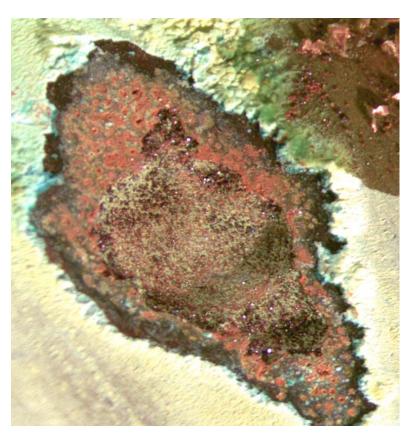




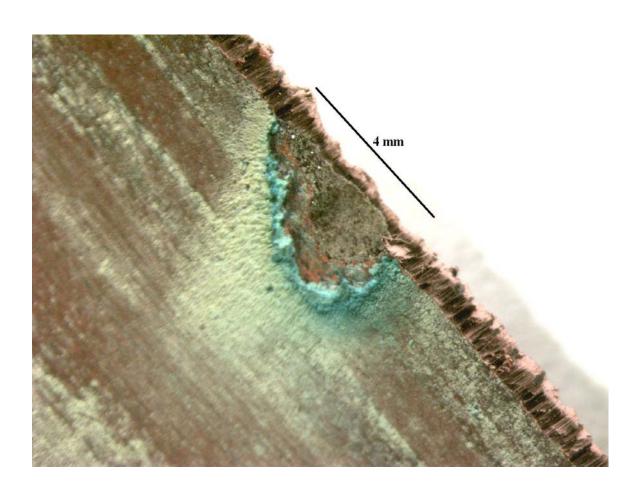
Literature suggests that the membrane consists of cuprite.


Building a scientific foundation for sound environmental decisions

Breaking Through the Membrane Solids Analysis



Pits are loosely packed with cuprite crystals beneath the permeable membrane

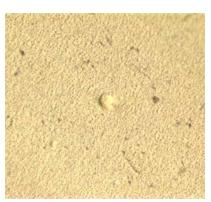

Building a scientific foundation for sound environmental decisions

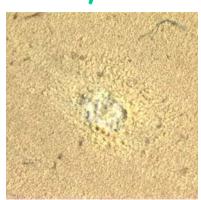
A Dissected Pit Reveals the Extent of the Damage

Building a scientific foundation for sound environmental decisions

Cross-Section of a Pit

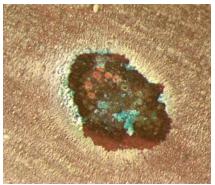
RESEARCH & DEVELOPMENT


Building a scientific foundation for sound environm


500 micron

decision

Pit Propagation Theory



Particle deposition, particle growth, and corrosion cell formation

Building a scientific foundation for sound environmental decisions

EDS Analysis of Particle

- · Copper
- · Aluminum
- ·Silicon
- ·Magnesium
- ·Oxygen

Building a scientific foundation for sound environmental decisions

Water Chemistry Comparison

SAMPID	Ca, mg/L	CI, mg/L	K, mg/L	Mg, mg/L	Na, mg/L	SO _{4,} mg/L	SiO _{2,} mg/L	TALK, mg/L CaCO₃	pН	TIC, mg C/L
Ohio Site #1	26.80	63.00	3.78	27.20	32.76	120.00	10.00	39.11	8.80	8.80
Bolton WTP	25.60	45.00	NA	23.70	NA	76.70	10.00	77.00	9.09	15.90

Building a scientific foundation for sound environmental decisions

Future Work

- Survey individuals
- Contact plumbers and plumbing suppliers
- · Examine more pipe
 - Carefully remove pipes
 - · Microbiological analysis
- Water heater solids
- Sample distribution system water
- Cement Leaching Study
- · Electrochemical corrosion analysis

Building a scientific foundation for sound environmental decisions

Thank You